圆锥体积说课稿
作为一名教师,常常要写一份优秀的说课稿,是说课取得成功的前提。优秀的说课稿都具备一些什么特点呢?下面是小编整理的圆锥体积说课稿,仅供参考,希望能够帮助到大家。
圆锥体积说课稿1一.说教材。
圆锥的认识和体积计算是《人教版》内容第十二册4143页的内容。本节
课是在认识了圆柱体的基础上继续学习的内容。学习圆锥可以进一步加强学生对立体图形的认识。为了帮助学生认识圆锥体,理解和掌握圆锥体的体积计算公式,教材是从观察入手,到实践操作,让学生通过操作把抽象的概念具体化、形象化。让圆锥体的有关概念,体积计算公式从实践中认识,然后运用到实际生活中去。
根据教材内容,确定教学目标:
1.通过观察和演示,使学生认识圆锥体,掌握它的特征和体积计算公式,并能根据具体问题灵活应用计算方法。
2.让学生理解圆锥体积公式的推导过程,认识圆柱体和圆锥体之间的关系,渗透辨证思维的方法。
3.通过实际操作,培养学生动脑、动手的能力,让学生养成严谨、仔细的良好习惯。
4.培养学生观察、比较、分析、判断推理的能力,发展学生空间观念,提高学生想象能力和逻辑思维能力。
教学重点难点和关键:
1.重点:(1)认识直圆锥并掌握它的一些特征。(2)圆锥体的体积计算。
2.难点:(1)圆锥体体积计算公式的推导。(2)解答有关直圆锥体实物体
积。
3.关键:要充分应用直观教具和电脑,进行演示和实验,有目的、有步骤地引导学生观察、思考,从而推导出计算公式和有关概念。
二.说教法和学法。
根据教材的内容和学生的年龄特征,我采用以下教法和学法:
1.直观操作,突破难点。
在这节课中,充分运用实物让学生认识直圆锥,通过圆锥体的点,线,面,
认识圆锥体的底和高。发挥学生四人小组的作用,大胆放手让学生动手操作,推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。通过动手操作,让学生用多种感官去感知事物,获取感性知识,使操作与思维紧密结合,加深对直圆锥及体积的认识。
2.运用电脑课件的动感突出重点。
圆锥体的认识是本节课的重点,为了让学生充分地认识圆锥体,把生活中
的锥形物体放在屏幕上(如小麦堆,漏斗等),运用电脑闪动形式认识圆锥体的底面,侧面,顶点,高。认识圆锥体积的大小也是本节的重点和难点内容,为了突出重点,突破难点,着重引导学生去探索等底等高的圆锥体与圆柱体体积之间的关系,充分运用电脑屏幕显示操作推导过程,把静态转化为动态,加深学生对所学知识的直观印象,生动、形象、具体的教学使学生能够由具体到抽象,由感觉到知觉进行顺利的过渡。
3.注意培养学生的发散性思维和创新意识。
创新教育是素质教育的核心,因此在课堂教学中注意培养学生的发散性思
维和创新意识。
在认识圆锥体的过程中,引导学生思考,发现,认识圆锥体的特征。在认识圆锥体的体积的过程中,引导学生积极地去和等底等高的圆柱体的体积进行比较,通过对比、分析、综合、归纳出圆锥体的体积计算公式。学生在充分认识了圆锥体和圆柱体之间的关系的基础上,从不同方面对学生进行练习,启发学生做一些有创新能力的题目,让学生充分发挥自己创造力的空间,培养学生发散性思维能力。
三. 说教学程序设计。
悬念引入。
首先让学生回忆近来学习了什么立体图形(圆柱体),在电脑屏幕上展示圆
柱体和圆锥体的实物,让学生认识圆柱体,说出圆柱体的体积公式,然后提问:屏幕上还有一些什么图形呢?(这样做一方面可以让学生初步感知圆锥体,另一方面既能激发学生的学习兴趣,又能培养学生独立思考的能力。)
探究新知。
1.圆锥的认识。
(1)圆锥的组成。
①面。圆锥有几个面?哪两个面?[教师板书:圆锥有两个面(一个侧
面,一个底面)。]
②棱。提问:圆锥有几条棱?是什么样的一条棱?[教师板书:圆锥
有一条棱(一条封闭的曲线)。]
③顶点。提问:圆锥有没有顶点?有几个顶点?[教师板书:圆锥一
个顶点。]
④高。提问:圆锥的高在哪里?教师出示圆锥教具(电脑显示),把它一分为二,让学生观察,得出高的概念。[教师板书:从圆锥的顶点到底面圆心的距离是圆锥的高。]
提问:圆锥旁边(手示圆锥侧面)这个长度是不是圆锥的高?圆锥有几条高?(一条高)
(2)圆锥的特征。
①一个底面是圆形。
②一个侧面展开图是扇形。(通过电脑演示得到。)
(3)指导学生看圆锥立体图。
2.圆锥体积公式推导。
(1)电脑出示木制圆柱体铅笔,用卷笔刀将前段削成圆锥后提问:削后的这一段是什么物体?这个圆锥是由什么物体削成的?这个圆锥体和原来这段圆柱体底面积和高有什么联系?两个体积有什么关系呢?(让学生发表意见)
(2)出示等底等高的圆柱体玻璃容器和圆锥体玻璃容器。
①教师演示圆柱和圆锥等底等高,并板书:等底等高。
教师演示,学生观察:将圆锥体容器里面装满黄沙后,往圆柱容器里面倒,
连续倒三次,圆柱体容器刚好倒满。
②指导学生四人小组做倒沙子实验。
四人小组组长演示,其余同学观察,发现圆柱体积和圆锥体积之间有什
么关系。
(3)提问:把圆锥里装满的黄沙倒入圆柱里后,沙占圆柱容积的多少?这样倒了几次后,才装满圆柱容器?这实验说明等底等高的圆锥和圆柱体积有什么关系?
(教师板书;圆锥的体积等于和它等底等高的圆柱体积的三分之一。)
教师出示不等底不等高的圆柱和圆锥容器,让学生观察教师的演示,提问:圆锥体积是这个圆柱体积的三分之一吗?为什么?学生讨论。
(4)提问:我们已经知道圆柱体积公式:V=Sh,那么与它等底等高的圆锥体积公式应是什么?
(教师板书:V=1/3 Sh。)
提问:这个公式里,Sh是求什么?为什么要乘以1/3?要求圆锥的体积应该知道什么条件?
3、公式应用。
(1)出示例1 一个圆锥体零件,底面积是19平方厘米,高是12厘米。这个圆锥体的体积是多少?
学生口答,教师板书。
V=1/3Sh 板书后提问:1912是求什么?
=1/31912 如果不乘以1/3是求什么?
=76(立方厘米)
答 :(略)
(2)如果题目不告诉底面积,而是告诉底面半径是3厘米, ……此处隐藏22374个字……圆锥的容积呢?③推导出圆锥体积的公式(师板书)。④如果已知r和h圆锥体积公式还可以怎样计算?如果已知d和h圆锥体积公式怎样计算?
⑺完成“试一试”。
3、巩固练习
做“练一练”。
4、归纳总结
通过本节课你有什么收获?有哪些问题需要我们今后注意?
圆锥体积说课稿14一,说教材
本节课是西师版义务教育教育课程标准实验教科书六年级数学下册第38页—41页的内容,圆锥是小学几何初步知识的最后一个教学内容,是学生在学习了平面图形以及长方体、正方体、圆柱体这三种立体图形的基础上进行研究的。以进一步发展学生的空间观念,为学生学习其它图形知识打下坚实的基础。为了做到有的放矢,我特制定以下
学习目标:
知识与技能目标:
掌握圆锥的体积公式,能运用公式进行计算。
过程与方法目标:
在观察、讨论等活动中探索圆锥的体积公式。
情感态度价值观目标:
体验数学与生活的密切联系,自觉养成合作交流与独立思考的良好习惯。
教学重点:
圆锥体积公式的运用。
教学难点:
掌握圆锥体积公式的推导过程。
突破点:
组织学生动手做实验,引导学生动脑、动手,推导出圆锥体积的计算公式。
二.说教法、学法
教法:根据学生的认知规律、实际水平,以及教学内容的特点,本节课我以自主探究、小组合作学习方式为主,采用情境教学法、启发教学法,实验活动法,归纳总结法。教学中,既要充分发挥学生的主体作用,又要调动学生积极主动地参与教学。
学法:采用分组、自主、合作、探究式的学习模式,引导学生主动学习、合作学习、创新学习,学生通过具体实践、操作、讨论、验证、总结、归纳等学生活动,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的。
三,课前准备
要求每个学生自制等底等高的圆柱形容器和圆锥形容器各一个。教师准备:等底等高的圆柱体、圆锥体教具,实验用的细沙。
四,教学过程:
1、情境导入,引出课题:(3分钟)
首先我会让每个小组,抽出一个代表给大家说一说在我们生活中哪些地方可以看见圆锥体,这样做不仅给本课的讲解创设了情境,更让学生体验到了从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。然后,我会追问学生:圆锥的体积到底怎样求呢?这就是我们这节课所要探讨的主要内容,板书课题《圆锥的体积》
2、读讲结合,自主探究(15分钟)
此时我会让学生拿出已经准备好了的等底等高的圆柱形和圆锥形容器,然后提问以下几个问题:1,这两个容器有什么共同的特征2。谁的体积更大?3。圆锥的体积是圆柱的多少呢?它们之间有没有一定的数量关系?
问学生:“你用什么办法验证自己的猜想呢?”这时候,肯定要有一部分聪明的或者已经预习课本的同学会说:“将圆锥形容器装满沙或水,在倒入圆柱形容器,看几次能倒满。”这时候就让同学们以小组为单位,验证他们的猜想。
教师只需要做最好总结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。如果用V表示圆锥的体积,S表示底面积,h表示高,那么就能得出圆锥体积的计算公式为:V=1/3Sh
3、运用新知,解决问题(10分钟)
多媒体出示:一个铅锤高6cm,底面半径4cm。这个铅锤的体积是多少立方厘米?
=100.48(立方厘米)
答:这个铅锤的体积是100.48立方厘米。
你能计算出铅锤的体积吗?同时提问一个程度比较好的同学进行演板,演板完毕后,教师不失时机的对其做出评价,同时强调做题格式。然后,进行一题多变:1。改变题中的半径和高的数值2,把半径该为直径3,把半径改为高,从而起到进一步巩固公式的作用
多媒体出示:煤厂有一堆近似于圆锥的煤,煤堆底面周长18.84米,高1.8米。准备用载重5吨的车来运。一次运走这堆煤,需要多少辆车?(1m3煤重1.4吨)
煤堆的底面积:
煤堆的体积:
1.4 16.956÷5≈5(辆)
答:需要5辆车。
学生自主解决,同组交流解题的心得。
4、圆锥在生活中的应用(多媒体展示)(2分钟)
5、运用公式,体会新知(多媒体展示)(5分钟)
6、质疑问难,总结升华(3分钟)
在此环节中,我会问学生“通过这节课的学习,你们有哪些收获,是怎样推导出圆锥的体积的公式的。
7、布置作业(多媒体展示)(2分钟)
圆锥体积说课稿15一、教材分析
教材通过向等底等高的圆柱和圆锥倒水的实验,得到圆锥体积的计算公式V=1/3sh。也就是等底等高的圆锥体积是圆柱体积的三分之一。教课书43页例1是直接利用公式求体积,例2是已知圆锥形小麦堆的底面直径和高,求小麦的重量,这是一个简单的实际问题,通过这个例子教学,使学生初步学会解决一与计算圆锥形物体的体积有关的实际问题。
二、学生基本情况
六年级四班,共有学生49人,其中男生20人,女生29人,以前学生对长方体、正方体等立体图形有了初步的认识和了解,七学期对圆锥、圆柱立体图形的特征进行了研究,通过学习,学生对圆柱,圆锥的特征有了很深刻的认识,对圆柱的体积,表面积,侧面积能熟练地计算,但也有少数学生立体观念不强,抽象思维能力差,因此学习效率差。
三、教学方法
由于本节课是立体图形(圆锥的体积)的学习,要培养学生学习的积极性,必须通过具体教具进行教学,从而给学生建立空间观念,培养学生的空间想象能力。
本节课我采用具体的实验,让学生发现圆柱体积与它等底等高的圆锥体积的关系,从而推导出圆锥的体积公式,然后让学生利用圆锥的体积公式,尝试计算圆锥的体积,以达到解决一些常见的实际问题的能力。
四、教学过程
本节课一开始,用口算,口答的形式引入课题,一是培养了学生的计算能力,二是为新授课作为辅垫,为学习圆锥的体积打下基础。
紧接着提示课题,以实验的方法让学生观察其规律,总结出圆锥的体积公式,这一环节是本节的难点,必须让学生理解清楚,特别是对三分之一的理解。
然后出示例题,让学生尝试解答例1,直接告诉底面积和高,可以直接利用公式计算,教师不必多的提示,只要学生会做就行。例2是已知圆锥形的小麦堆的底面直径和高,要求小麦重量,实际旧就要先求体积。
学生尝试解答后,教师特别引导,要求体积,这个题不知道底面积,则要先求底面积,二是要让学生讨论,如果这堆小麦知道直径和高,你能想办法测出来吗?这样培养了学生空间想象力。
最后,设计了三个巩固练习,都是在基本求出圆锥体积的基础上进行提高训练,这样即满足了基础知识的学习,又使优生能有所提高。搜集整理参考。
文档为doc格式